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Resonant interactions of drift vortex solitons in a convective motion of a plasma

Masayoshi Tajiri and Hiroshi Maesono
Department of Mathematical Sciences, College of Engineering, University of Osaka Prefecture, Sakai 593, Japan

~Received 1 April 1996!

The three dimensionality of drift vortex solitons in a convective motion is investigated. The propagation of
vortex solitons is described by the Kadomtsev-Petviashvili equation with negative dispersion. It is pointed out
that under a certain condition the vortex soliton resonance is possible.@S1063-651X~97!05102-7#

PACS number~s!: 52.35.Kt, 52.35.Ra
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I. INTRODUCTION

The pseudo-three-dimensional dynamics of a magnet
~with magnetic fieldB05B0ẑ! and inhomogeneous@with
densityn0~x!# plasma withTe@Ti , by taking account of the
motion of electrons along the magnetic field, can be
scribed by the Hasegawa and Mima equation@1,2#

]

]t
~¹'

2f2f!2@~“'f3 ẑ!•“'#~¹'
2f2 lnn0!50, ~1!

where ẑ is the unit vector of thez axis; the time and spac
coordinates are normalized byvci

21 and rs5(Te/mi)
1/2/vci

~vci is the ion cyclotron frequency,Te is the electron tem-
perature!, the electric potentialf by Te/e, and the subscrip
' indicates the components perpendicular toB0. When we
take they axis in the direction of the density gradient, Eq.~1!
admits a linear wave whose dispersion relation is given

v52
@~k3 ẑ!•“'lnn0~y!#

11k2
5

kkx
11k2

, ~2!

wherek is the wave vector in the direction perpendicular
ẑ, kx is thex component ofk, andk5u“' ln n0(y) u. The drift
wave which exists in such a magnetized and nonunifo
plasma has interesting properties. Hasegawa and Kodam@3#
showed that the spectrum cascade by mode coupling in
wave turbulence described by Eq.~1! occurs at longer and
shorter wavelengths. In a region of large wave numbers,
energy spectrum cascade to smalleruku, and in a small wave
number region the energy tends to decay to a lower
quency, hence to smallerkx . Thus, the energy spectrum
tends to condense at a critical value ofky5kc andkx50. It is
well known that as a consequence of cascade, a peri
zonal flow in thex direction perpendicular to both direction
of inhomogeneity and applied magnetic field appears in
plasma @4#. Nozaki et al. @5# have shown that vortice
formed by the shear flow propagate along the neutral she
the zonal flows at the Korteweg-de Vries~KdV! solitons.
They have obtained the KdV equation for the motion of v
tices by applying the reductive perturbation method to
Hasegawa and Mima model equation and also to the
dimensional ion-fluid equations with the Boltzmann distrib
tion for the electron density.

As the KdV solitary wave is a nonlinear wave, which b
virtue of the one dimensionality is fully stable, vortex so
tons described by the KdV equation may be stable. Howe
551063-651X/97/55~3!/3351~7!/$10.00
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we cannot tell whether the vortex soliton is stable agai
bending distortion. Laedke and Spatschek@6# showed that
two dimensional perturbations of single vortices in the pla
perpendicular to the magnetic field do not grow in time. R
cently, the three dimensional stability of monopolar drift vo
tices has been studied by A˚ kerstedtet al. @7#. They showed
that vortices with a monotonic decreasing or increasing
dial profile of the potential vorticity are stable for long tran
verse perturbation. When we consider the three dimens
ality of drift vortices, the three dimensional interactio
between vortices is an interesting problem as well as
three dimensional stability. However, almost all studies
the interactions use two-dimensional models.

When we consider the vortex motion in an inhomog
neous plasma extended to the direction of magnetic field,
three dimensionality of the vortex must be taken into a
count. In this paper, we investigate the propagation of d
vortices in a two dimensional periodic zonal flow that e
tends to the direction of the magnetic field uniformly. W
consider the case that the motion of ions is nearly two
mensional but vortex lines are inclined to thez axis. In Sec.
II, we derive the Kadomtsev-Petviashvili~K-P! equation
from the fluid equation by using the reductive perturbati
method, which describes the propagation of drift vortex so
tons. In Sec. III, the interaction between two inclined vort
solitons is investigated by making use of the two-soliton
lution of the K-P equation, and the existence of vortex so
ton resonance is shown. Summary and discussion are g
in the last section.

II. DERIVATION OF THE K-P EQUATION
FROM A FLUID MODEL

The three dimensionality of drift vortices in the zon
flow in the direction perpendicular to both directions of i
homogeneity and magnetric field is investigated. We assu
that the ion temperature is much smaller than the elec
temperature, and use a cold ion approximation. The fl
equations for cold ions take the forms

]n

]t
1vx

]n

]x
1vy

]n

]y
1vz

]n

]z
1nS ]vx

]x
1

]vy
]y

1
]vz
]z D50,

~3!

]vx
]t

1vx
]vx
]x

1vy
]vx
]y

1vz
]vx
]z

52
]f

]x
1vy , ~4!
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]vy
]t

1vx
]vy
]x

1vy
]vy
]y

1vz
]vy
]z

52
]f

]y
2vx , ~5!

]vz
]t

1vx
]vz
]x

1vy
]vz
]y

1vz
]vz
]z

52
]f

]z
, ~6!

where we take thez axis in the direction of the magnetri
field, the time and space coordinates are normalized byvci

21

andrs5(Te/mi)
1/2/vci , respectively, and the electric pote

tial f by Te/e.
As the ion density in drift waves is equal to the electr

density to a high accuracy, the quasineutrality condition
latesn to the electron density which is given by the Bolt
mann distribution

n5exp~f!. ~7!

In this section, we extend the reductive perturbation@5#
for the one-dimensional propagation of drift vortices in t
two dimensional space to the quasi one-dimensional pro
gation in the three-dimensional space. We assume tha
electrostatic drift wave is propagated in thex direction while
it varies slowly in thez direction, so that by means of
parametere, ordering a smallness of the amplitude stretch
variables may be expressed as

j5e1/2~x2elt !,
h5e1/21az,
t5e5/2t,

~8!

wherel is the phase velocity in thex direction of the drift
wave in the long wave limit and so thatf is expanded as

f5ef~1!1e2f~2!1e3f~3!••• , ~9!

and also

vx5evx
~1!1e2vx

~2!1e3vx
~3!1e4vx

~4!1••• , ~10!

vy5e1/2~evy
~1!1e2vy

~2!1e3vy
~3!1e4vy

~4!1••• !, ~11!

vz5e1/21b~evz
~1!1e2vz

~2!1e3vz
~3!1e4vz

~4!1••• !, ~12!

wherea ~.0! andb ~.0! are parameters to be determin
andf~1! and (v x

(1) ,v y
(1)) are the electrostatic potential an

drift velocity related to the zonal flow. When we take they
axis in the direction of the density gradient,f~1!, v x

(1), and
v y
(1) are regarded as functions ofy only. We note here tha

the quasineutrality condition does not break down beca
the vorticity is not strong. Introducing the transformatio
@Eq. ~8!# and the expansions@Eqs. ~9!–~12!# into Eqs.~3!–
~7!, we havea53/2 andb51 from the consistency of the
ordering and the requirement that the reduced equation m
contain theh derivatives. In the lowest order,O~e! and
O~e3/2!, and in the second orderO~e2! andO~e5/2!, we have
the guiding-center drift,

vx
~1!52

df~1!

dy
52F~y!, vy

~1!50, ~13!

vx
~2!52

]f~2!

]y
, vy

~2!5
]f~2!

]j
, ~14!
-

a-
an

d
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respectively. In the third order,O~e3! andO~e7/2!, we have
the polarization drift

vx
~3!52

]f~3!

]y
, ~15!

vy
~3!5~l1F!

]2f~2!

]j]y
2

]f~2!

]j
F81

]f~3!

]j
, ~16!

and the equation forf~2!

H ~l1F!
]2

]y2
2~l1F9!J ]f~2!

]j
50, ~17!

which are in agreement with the results of Ref.@5# to this
point. We assume thatf~2! is separable

f~2!5X~2!~j,h,t!Y~2!~y!. ~18!

Substituting Eq.~18! into Eq. ~17!, we have

W~l!Y~2!~y!5S d2dy2
2

l1F9

l1F DY~2!~y!50. ~19!

It follows thatl is one of the eigenvalues of Eq.~19!, under
the periodic boundary condition forY~2!,

Y~2!~0!5Y~2!~ l !,
Y~2!8~0!5Y~2!8~ l !.

~20!

In the fourth orderO~e4! andO~e9/2!, we obtainv x
(4), v y

(4),
v z
(1) and the equation forf~3! as follows:

vx
~4!5~l1F!

]2f~2!

]j2
2

]f~4!

]y
, ~21!

vy
~4!52

]2f~2!

]t]y
1~l1F!

]2f~3!

]j]y
1

]f~2!

]y

]2f~2!

]j]y

2
]f~2!

]j

]2f~2!

]y2
2F8H ~l1F!

]2f~2!

]j]y

2F8
]f~2!

]j
1

]f~3!

]j J 1
]f~4!

]j
, ~22!

~l1F!
]vz

~1!

]j
5

]f~2!

]h
, ~23!

and
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H ~l1F!
]2

]y2
2~l1F9!J ]f~3!

]j
1

]

]t S 12
]2

]y2Df~2!

1S ]3f~2!

]j]y2
]f~2!

]y
2

]f~2!

]j

]3f~2!

]y3 D 1~l1F!
]3f~2!

]j3

2
]f~2!

]j
~lf~1!1FF822F8F91f~1!F9!

1
]2f~2!

]j]y
$~l1F!F2~l1F!F9%

1
]3f~2!

]j]y2
$~l1F!~f~1!2F8!%1

]vz
~1!

]h
50. ~24!

Differentiating Eq.~24! with respect toj, substituting Eq.
~23! into the equation and taking account of Eq.~18!, we
have

W~l!
]2f~3!

]j2
2

1

l1F S d2Y~2!

dy2
2Y~2!D ]2X~2!

]t]j

2
1

l1F SY~2!
d3Y~2!

dy3
2
dY~2!

dy

d2Y~2!

dy2 D
3

]

]j SX~2!
]X~2!

]j D 1H F8S 211
F9

l1F DY~2!

1~F2F9!
dY~2!

dy J ]2X~2!

]j2
1Y~2!

]4X~2!

]j4

1
1

~l1F!2
Y~2!

]2X~2!

]h2 50. ~25!

Multiplying Eq. ~25! by the eigenfunctionY~2! for l, and
then integrating overy from 0 to l , we obtain theK-P equa-
tion for X~2! as a compatibility condition,

Xtj
~2!1a~X~2!Xj

~2!!j1bXjjjj
~2! 1gXhh

~2!1dXjj
~2!50. ~26!

where the coefficientsa, b, g andd are given by

a52
1

N E
0

l

~Y~2!!3
1

l1F

d

dy S l1F9

l1F Ddy, ~27!

b5
1

N E
0

l

~Y~2!!2dy, ~28!

g5
1

N E
0

l

~Y~2!!2
1

~l1F!2
dy, ~29!

d52
1

N E
0

l H ~Y~2!!2F8S 12
F9

F1l D
2Y~2!Y~2!8~F2F9!J dy, ~30!

N5E
0

l

~Y~2!!2
F2F9

~l1F!2
dy. ~31!
The last term of Eq.~26! can be eliminated by the Galile
transformation. The coefficientsa and b are in agreemen
with the coefficients of a nonlinear term and a dispers
term of the KdV equation, which is derived in Ref.@5#, re-
spectively. Following Ref. @5#, we assume a periodic
electric-field with small variation about the constant val
ec0 in order to get the finite coefficienta of the nonlinear
term of Eq.~26!,

2F5c01 fV~y!, ~32!

whereV is given by

V~y!5 (
m51

amsinkmy1 (
m51

bmcoskmy,

km52pm/ l , ~33!

where f is a small parameter but is much greater thane.
ExpandingW, l andY~2! in power of f ,

W5W01 fW11••• ,
l5l01 fl11••• ,

Y~2!5Y0
~2!1 fY1

~2!1••• ,
~34!

and following the same calculation plan to Ref.@5#, we have

l05
c0km

2

11km
2 , ~35!

Y0,m
~2! 5

A2/l
AAm

2 1Bm
2 $Amsinkmy1Bmcoskmy%, ~36!

whereAm andBm are arbitrary constants. Let themth eigen-
mode be excited. Substituting Eqs.~35! and ~36! into Eqs.
~27!–~31!, we have

am52
f

A8l
k3m
c0

~km
2 2k3m

2 !H a3m Bm

AAm
2 1Bm

2

3S 12
4Am

2

Am
2 1Bm

2 D 1b3m
Am

AAm
2 1Bm

2 S 12
4Bm

2

Am
2 1Bm

2 D J
1O~ f 2!, ~37!

bm52
c0

~11km
2 !2

1O~ f !, ~38!

gm52
1

c0
1O~ f !, ~39!

and
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dm5
c0

~11km
2 !2

$k2m1km~11k2m
2 !%S 12 Am

2 2Bm
2

Am
2 1Bm

2 a2m

1
AmBm

Am
2 1Bm

2 b2mD f1O~ f 2!. ~40!

It should be noted thatbmgm51/(11km
2 )2.0. Thus the

propagation of the three dimensional drift vortex solitons
described by theK-P equation with negative dispersion. A
being pointed out by Nozakiet al. @5#, the vortex soliton is
produced by means of the coupling between themth mode
and the 3m harmonic component in the zonal flow. The sh
of the soliton-velocitydm is produced by the coupling be
tween themth mode and the 2m harmonic component in the
zonal flow.

For the one-soliton solution of Eq.~26!, fm
(2) takes the

form

fm
~2!53

bm

am
K2sech2

1

2HKS j1
L

K
h D2VtJA2

l

3sinS kmy1
p

2 D1O~ f !, ~41!

whereK andL are thex andy components of soliton wave
number, respectively, andV is given by

Vm5bmK
31gm

L2

K
, ~42!

and sin21(Am/AAm
2 1Bm

2 ) is taken to bep/2.
Equation~41! shows that the potential-well and potentia

hump solitons are lined up in they direction alternately. The
electric field is directed to the center of the soliton in t
potential-well and it is directed outward from the center
the potential-hump soliton. It may be noted that the direct
of rotation due to theE3B drift between the neighboring
vortex is opposite. One of the vortex solitons is drawn in F
1. The figure shows the contourfm

(2)5const for Eq.~41!
depicted in the frame moving with soliton.

Finally, we note that if some of the coefficientsa, b, and
g in Eq. ~26! become extremely small or large for a give
configuration, others stretching from Eqs.~8!–~12! must be
introduced. In that case, we shall obtain another equa
instead of Eq.~26!.

III. RESONANT INTERACTION OF VORTEX SOLITONS

We have obtained theK-P equation for the motion of
vortices in zonal flow by applying the reductive perturbati
method to be three dimensional cold ion-fluid equations w
the Boltzmann distribution for electron density. TheK-P
equation was first introduced in order to discuss the stab
of the line soliton against long transverse perturbation
Kadomtsev and Petviashvili@8#. The results were obtaine
that the line soliton of the KdV equation is unstable in t
case of positive dispersion and is stable for negative dis
sion. The equation corresponds to the case of negative
positive dispersion whenbg.0 andbg,0, respectively. As
the equation that is derived in previous section h
bmgm51/(11km

2 )2.0, the motion of vortex solitons is de
s

n

.

n

h

y
y

r-
nd

s

scribed by theK-P equation with negative dispersion. Th
means that vortex line soliton is stable against a transv
perturbation. It is interesting to study the interaction betwe
two obliquely moving vortex solitons. The study of the in
teraction of two obliquely moving line solitons has be
made by Miles@9#. He has shown that, when relative incl
nation between wave normals is at a certain small criti
angle, two solitons interact strongly in the case of negat
dispersion to make a resonant soliton from a point at wh
the two incident solitons meet together. On the other hand
the case of positive dispersion, line solitons never satisfy
resonant condition. From the procedure to construct the m
tisoliton solutions of theK-P equation@10#, the two-soliton
solution is given by

X512
b

a
~ logf !jj , ~43!

f511exph11exph21a~1,2!exp~h11h2!, ~44!

h j5Kjj1L jh2V jt2h j
0, ~45!

KjV j5bKj
41gL j

2~ j51,2!, ~46!

FIG. 1. Vortex soliton. ~a! The perturbed electric potential contou
lines,f1

~2!51.0 and 3.0, are depicted at different values ofh in the frame
moving with the soliton. The parameters are set as follows:m51,
am5bm51, a3m5b3m50.1, f50.1, and K51.52, andL50.6,
wherey, f1

~2! , j, andh are normalized byrs , e2Tee
21, e21/2rs , and

e22rs , respectively.~b! The perturbed electric potentialf1
~2! @Eq.

~41!# at h5210 and the contour map of equipotential.
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FIG. 2. The repulsive interaction between two vortex solitons~0
,a~1,2!,1!. ~a! The perturbed electric potential contour line
f1

~2!51.0 and 3.0, are depicted at different values ofh. The param-
eters are set as follows:m51, am5bm51, a3m5b3m50.1, f50.1,
andK150.76,L150.3,K251.3, andL2520.44.~b! The perturbed
electric potentialsf1

~2! and the contour maps of equipotential
h524, h510, andh5214.
whereh j
0 is the real constant anda~1,2! relates to the phase

shift f of the two interacting solitons,

exp~2f!

5a~1,2!

52
~K12K2!~V12V2!2g~L12L2!

22b~K12K2!
4

~K11K2!~V11V2!2g~L11L2!
22b~K11K2!

4 .

~47!

For the case ofa~1,2!.0, the solution@Eq. ~43!# represents
regular interaction of two solitons. According toa~1,2!.1 or
a~1,2!,1, the interaction is attractive or repulsive in th
x-direction. In Figs. 2 and 3, typical patterns of solution a
shown for the two cases. Figures 2 and 3 correspond to
pulsive and attractive cases, respectively. In the lim
a~1,2!→`, the phase shift becomes infinite. This is thoug
to be resonance between two inclined vortex solitons, wh
condition is given by setting the dominator ofa~1,2! to zero

tanu12tanu256
)c0
11km

2 ~K11K2!, ~48!

where uj5arctan(L j /Kj ). Figure 4 is the snapshot of th
resonant interaction between two inclined vortex solito
with parameters near the resonant condition in Eq.~48!. Two
vortex solitons interact strongly to make a resonant vor
soliton from a point at which the two incident solitons me
together.

The condition of the other limita~1,2!→0, in which the
phase shift becomes minus infinity, is given by equating
numerator ofa~1,2! to zero, which is expressed as follows

tanu12tanu256
)c0
11km

2 ~K12K2!. ~49!

Figure 2 is the snapshot of the interaction between two
clined vortex solitons with parameters near the condition
Eq. ~49!. In this case, two vortex solitons cannot approa
each other closely. They interact through the messenger
ton denoted byM in Fig. 2. The solution of the messeng

FIG. 3. The attractive interaction between two vortex solitons@a~1,2!
.1#: The perturbed electric potential contour linesf1

~2!51.0 and 3.0
are depicted at different values ofh ~K150.76, L150.3, K251.3,
L252.3!.
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soliton is given by taking the limit h1→`,
h21log a~1,2!→2` but h12h2;O~1! as follows,

fM
~2!53

bm

am
~K12K2!

2

3sech2
1

2 H ~K12K2!S j1
L12L2
K12K2

h D2VMtJ
3A2

l
sinS kmy1

p

2 D1O~ f !, ~50!

where

VM5bm~K12K2!
31gm

~L12L2!
2

K12K2
. ~51!

It should be noted that the messenger soliton and the se
soliton satisfy the resonant condition. Thus, the messen

FIG. 4. The resonant interaction between two vortex solitons with
rameters near the resonant condition~K150.76, L150.01, K251.3,
L252.3!.
id

la
nd
er

soliton and the second soliton interact resonantly to make
first soliton which is shifted by loga~1,2!.

IV. SUMMARY

We have investigated the propagation of thre
dimensional drift vortices in a two-dimensional period
zonal flow which extends to the direction of the applied ma
netic field. The propagation of vortices is described by
K-P equation with negative dispersion. Therefore, vortic
propagate as theK-P solitons in the direction normal to th
static electric field with inhomogeneity. The solutions sho
that the potential-hump and potential-well solitons are lin
up in the direction of the static electric field alternatively a
propagate with the same velocity. These hump and well p
rotate clockwise and counterclockwise in the sense of
E3B drift, respectively.

As the propagation of the vortex solitons is described
the K-P equation with negative dispersion, the vortex m
be stable against a transverse perturbation. The interac
between two obliquely moving vortex solitons are also
vestigated by using the two-soliton solution of theK-P
equation. It is shown that the drift vortex soliton resonance
possible under a certain condition.

When the angle of intersection between two solitons
the critical value given by Eq.~48!, the resonance occurs t
form the triad soliton as shown in Fig. 4. However, it shou
be noted that when the angle of intersection of the two s
tons is between the critical values, the two-soliton solut
@Eq. ~43!# becomes singular. As pointed out by Miles@9#, the
resonance solution is on the borderline between regular
singular regimes in the parameter space. Although the
rowness of the resonance region may cast doubt on the
istence of the soliton resonance in a real system, it is poss
to produce a virtual resonant soliton in the region close to
exact resonance state. In fact, Folkeset al. @11# and Nishida
and Nagasawa@12# verfied the resonance conditions by th
observation of such a virtual state of plane ion-acoustic s
-tons. The resonant interaction of ion-acoustic solitons
been studied both theoretically and experimentally by ma
authors @13–17#. The importance of soliton resonance
nonlinear development of the two dimensional wave syst
is clear. Now the possibility of drift vortex soliton resonan
has been shown even in the special case. We believe tha
vortex soliton resonance is also important in understand
the time evolution of the vortex soliton systems.
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